convoluted polygons [fltk]

Bjarne Stroustrup “Programming Principles and Practice Using C++”
Chapter 12 Exercise 11
Using GUI library called FLTK (Fast Light Tool Kit, “full tick”).

Output:

[code language=”cpp”]
// Philipp Siedler
// Bjarne Stroustrup’s PP
// Chapter 12 Exercise 11

#define _USE_MATH_DEFINES
#include "Simple_window.h"
#include "Graph.h"
#include <cmath>
using namespace Graph_lib;

int main()
try
{
Point tl(100, 100);
Simple_window win(tl, 600, 400, "Regular Polygons");

Graph_lib::Closed_polyline triangle;
triangle.set_color(Color::black);

triangle.add(Point(260, 200));
triangle.add(Point(340, 200));
triangle.add(Point(300, 200 – (tan((60 * (M_PI / 180))) * 40)));

Graph_lib::Closed_polyline quad;
quad.set_color(Color::black);

quad.add(Point(260, 200 – (tan((60 * (M_PI / 180))) * 40)));
quad.add(Point(340, 200 – (tan((60 * (M_PI / 180))) * 40)));
quad.add(Point(340, 280 – (tan((60 * (M_PI / 180))) * 40)));
quad.add(Point(260, 280 – (tan((60 * (M_PI / 180))) * 40)));

Graph_lib::Closed_polyline pentagon;
pentagon.set_color(Color::black);

Point center(300, (240 – (tan((60 * (M_PI / 180))) * 40)));
Graph_lib::Circle cl(center, 2);
cl.set_color(Color::black);

double radius = 64;

double s1 = sin((2 * M_PI) / 5) * radius;
double c1 = cos(M_PI / 5) * radius;

double s2 = sin((2 * M_PI) / 5) * radius;
double c2 = cos((4 * M_PI) / 5) * radius;

vector<double> pentaX;
vector<double> pentaY;

for (int i = 0; i < 5; i++) {
pentaX.push_back(radius * cos(2 * M_PI*i / 5));
pentaY.push_back(radius * sin(2 * M_PI*i / 5));
}
for (int i = 0; i < 5; i++) {
pentagon.add(Point(pentaX[i] + center.x + 6, pentaY[i] + center.y));
}

win.attach(cl);
win.attach(quad);
win.attach(triangle);
win.attach(pentagon);

win.wait_for_button();
}
catch (exception& e) {
cout << e.what() << endl;
return 1;
}
catch (…) {
cout << "Exiting" << endl;
return 2;
}
[/code]

Leave a Reply